A TERCEIRA REPRESENTAÇÃO DE ESTADO QUÂNTICO COM O SDCTIE GRACELI.

3- UM ESTADO QUÂNTICO SE FUNDAMENTA CONORME SE ENCONTRA NOS PARÃMETROS DO SDCTIE GRACELI.

COMO EXPRESSO ABAIXO, NA FUNÇÃO GERAL DO SDCITE GRACELI.

A representação do estado


No formalismo da mecânica quântica, o estado de um sistema num dado instante de tempo pode ser representado de duas formas principais:

  1. O estado é representado por uma função complexa da posição ou do momento linear de cada partícula que compõe o sistema. Essa representação é chamada função de onda.
  2. Também é possível representar o estado por um vetor num espaço vetorial complexo.[3] Esta representação do estado quântico é chamada vetor de estado. Devido à notação introduzida por Paul Dirac, tais vetores são usualmente chamados kets (sing.: ket).

Em suma, tanto as "funções de onda" quanto os "vetores de estado" (ou kets) representam os estados de um dado sistema físico de forma completa e equivalente e as leis da mecânica quântica descrevem como vetores de estado e funções de onda evoluem no tempo.

Estes objetos matemáticos abstratos (kets e funções de onda) permitem o cálculo da probabilidade de se obter resultados específicos em um experimento concreto. Por exemplo, o formalismo da mecânica quântica permite que se calcule a probabilidade de encontrar um elétron em uma região particular em torno do núcleo.

Para compreender seriamente o cálculo das probabilidades a partir da informação representada nos vetores de estado e funções de onda é preciso dominar alguns fundamentos de álgebra linear.



TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll * D
          
X
 [ESTADO QUÂNTICO]


equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.

A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.

Detalhes

A equação de Pauli é mostrada como:

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Onde:

  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  • x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 

  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.
  •  são os dois componentes spinor da onda, podem ser representados como .

De forma mais precisa, a equação de Pauli é:

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes  de Pauli.




força magnetomotriz provê um meio matemático para definir um campo magnético em eletromagnetismo clássico. É análogo ao potencial elétrico o qual define o campo elétrico na eletrostática. Existem dois meios para definir este potencial - como um escalar e como um vetor potencial. O vetor potencial magnético é usado muito mais frequentemente que o potencial magnético escalar.

O vetor potencial magnético é frequentemente chamado simplesmente o potencial magnético, vetor potencial, ou vetor potencial electromagnético. Se o vetor potencial magnético é dependente do tempo, ele também define uma contribuição ao campo elétrico.
A força magnetomotriz , dada em Ampére-espira  é diretamente proporcional ao número de espiras na bobina e diretamente proporcional à corrente elétrica que circula na bobina,[1] logo:

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



onde:

: força magnetomotriz;  (Ampére-espira)

: número de enrolamentos na bobina

: corrente elétrica que circula pela bobina;  (Ampére)

Analogia com a Lei de ohm

Fazendo uma analogia com a Lei de ohm, é possível calcular a , considerando um circuito magnético fechado (fonte CA, bobina e núcleo de ferro), onde:

Aplicando a lei de ohm:

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



onde:
: Relutância magnética;  (Ampére-espira por Weber).
: Fluxo magnético;  (Weber).




fluxo magnético, representado pela letra grega Φ ou ΦB, é análogo ao fluxo elétrico.[1] A unidade no SI é o weber, unidade equivalente ao tesla-metro quadrado (Tm²),[2] dado que o campo magnético mede-se em tesla (T) e a área em metro quadrado (m²).


Definição

Por definição, o fluxo do campo magnético  através de uma superfície orientada  é calculado como a integral do produto escalar do vetor campo magnético  pelo elemento diferencial de área  ao longo de toda a superfície S em consideração.[3]

Matematicamente temos: 

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Casos particulares

Campo uniforme

Existem situações onde o cálculo acima pode ser simplificado. Isso ocorre quando a superfície, pela qual se tem a passagem das linhas de campo, é plana e  é uniforme (apresenta mesma magnitude e direção) em toda superfície. Nesses casos o fluxo através da superfície será dado por:[4]

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Onde,

 : é o vetor área - sendo este perpendicular à superfície do material imersa no campo magnético.
 : corresponde ao vetor campo magnético.
 : é o ângulo formado entre o vetor  e vetor área .
 : representam os módulos dos vetores correspondentes.

Existem três maneiras de alterar o fluxo que passa através de uma superfície plana:[2]

  • Mudar o módulo do campo magnético ( );
  • Mudar a área  da superfície atravessada pelo campo magnético;
  • Mudar o ângulo  entre  e .

Fluxo através de bobinas

Frequentemente se quer obter o fluxo magnético através uma superfície limitada por uma bobina. Se a bobina tem N voltas, então o fluxo total será a soma dos fluxos que passam por cada volta da bobina. Contudo, esse cálculo só pode ser feito se as voltas da bobina foram suficientemente próximas umas das outras para que possam ser consideradas superfícies "limitadas". Sendo assim, para um campo magnético uniforme aplicado sobre a bobina, teremos:[4]

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Fluxo através de uma superfície fechada

O fluxo magnético total através de uma superfície fechada S é igual a zero, como prevê a Lei de Gauss para o magnetismo. Isso ocorre pois todas as linhas de campo que entram por um dos lados da superfície saem pelo outro. Na forma integral temos:

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Exemplos de superfícies fechadas.

Dessa equação se pode concluir que o fluxo através de uma superfície fechada independe da superfície em questão (pode ser uma esfera, um cubo, um toroide, etc). [1]

Lei de Gauss para o magnetismo

A Lei de Gauss para o magnetismo é uma das equações de Maxwell. Essa lei, na forma diferencial, expressa que o divergente do campo magnético é igual a zero. Isso é uma consequência da inexistência de monopolos magnéticos.[5]

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Variação do fluxo de indução magnética

Se o fluxo magnético que passa através de uma espira condutora sofre uma variação, uma força eletromotriz é induzida nessa espira. Essa observação foi feita por Michael Faraday e foi chamada de lei de indução de Faraday, que é matematicamente expressa por:[2]

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


O sinal negativo se deve à oposição da força eletromotriz à variação do fluxo magnético. Alternativamente, o sinal pode ser definido por meio da lei de Lenz.

Força eletromotriz gerada em uma bobina

Análogo ao caso do cálculo de fluxo magnético para a bobina, tem-se para :

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Esse cálculo somente é válido se as v







As equações de Madelung ou as equações da hidrodinâmica quântica são uma formulação alternativa de Erwin Madelung equivalente à equação de Schrödinger, escrita em termos de variáveis hidrodinâmicas, similar às equações de Navier-Stokes da dinâmica dos fluidos. A derivação das equações de Madelung[1] é semelhante à formulação de de Broglie-Bohm, que representa a equação de Schrödinger como uma equação quântica de Hamilton-Jacobi .

Equações

As equações de Madelung [2] são equações de Euler quânticas:[3]

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde  é a velocidade do fluxo  é a densidade de massa,  

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


é o potencial quântico de Bohm e  é o potencial da equação de Schrödinger. A circulação do campo de velocidade de fluxo ao longo de qualquer trajetória fechada obedece à condição auxiliar .[4]

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


As equações de Madelung são derivadas escrevendo-se a função de onda na forma polar

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


e substituindo esta forma na equação de Schrödinger

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 

O fluxo de velocidade é definido por

,
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 

a partir do qual também descobrimos que 

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde  é a corrente de probabilidade da mecânica quântica padrão.

força quântica, que é o negativo do gradiente do potencial quântico, também pode ser escrita em termos do tensor quântico de pressão.

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


A integral de energia armazenada no tensor de pressão quântica é proporcional à informação de Fisher, que é responsável pela qualidade das medições. Assim, de acordo com o limite de Cramér-Rao, o princípio da incerteza de Heisenberg é equivalente a uma desigualdade padrão para a eficiência (estatística) das medições. A definição termodinâmica do potencial químico quântico  

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


segue do equilíbrio da força hidrostática acima 

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


. De acordo com a termodinâmica, em equilíbrio, o potencial químico é constante em todos os lugares, o que corresponde diretamente à equação estacionária de Schrödinger. Portanto, os autovalores da equação de Schrödinger são energias livres, que diferem das energias internas do sistema. A energia interna das partículas é calculada via 

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


  e está relacionado com a correção local de Carl Friedrich von Weizsäcker .[5] No caso de um oscilador harmônico quântico, por exemplo, pode-se facilmente mostrar que a energia do ponto zero é o valor do potencial químico do oscilador, enquanto a energia interna do oscilador é zero no estado fundamental,. Assim, a energia do ponto zero representa a energia para colocar um oscilador estático no vácuo, o que mostra novamente que as flutuações do vácuo são a razão da mecânica quântica.





Na mecânica quântica, o estado do gato, em homenagem ao gato de Schrödinger,[1] é um estado quântico que é composto de duas condições diametralmente opostas ao mesmo tempo,[2] como as possibilidades de um gato estar vivo e morto ao mesmo tempo. O gato de Schrödinger às vezes é conectado à hipótese dos muitos mundos por seus proponentes.[3]

Estados do gato em modos únicos

Função de Wigner de um estado do gato Schrödinger

Em óptica quântica, um estado de gato é definido como a superposição quântica de dois estados coerentes de fase oposta de um único modo óptico[4] (por exemplo, uma superposição quântica de grande campo elétrico positivo e grande campo elétrico negativo):

,
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 

onde

,
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


e

,
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


são estados coerentes definidos na base do número (Fock). Observe que se adicionarmos os dois estados juntos, o estado de gato resultante conterá apenas os termos do estado de Fock:

.
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Como resultado dessa propriedade, o estado do gato acima é frequentemente referido como um estado do gato uniforme. Alternativamente, podemos definir um estado ímpar de gato como

,
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 

que contém apenas estados Fock ímpares

.
x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Estados coerentes pares e ímpares foram introduzidos pela primeira vez por Dodonov, Malkin e Man'ko em 1974.[5]




Comentários

Postagens mais visitadas deste blog