A TERCEIRA REPRESENTAÇÃO DE ESTADO QUÂNTICO COM O SDCTIE GRACELI.
3- UM ESTADO QUÂNTICO SE FUNDAMENTA CONORME SE ENCONTRA NOS PARÃMETROS DO SDCTIE GRACELI.
COMO EXPRESSO ABAIXO, NA FUNÇÃO GERAL DO SDCITE GRACELI.
A representação do estado
No formalismo da mecânica quântica, o estado de um sistema num dado instante de tempo pode ser representado de duas formas principais:
- O estado é representado por uma função complexa da posição ou do momento linear de cada partícula que compõe o sistema. Essa representação é chamada função de onda.
- Também é possível representar o estado por um vetor num espaço vetorial complexo.[3] Esta representação do estado quântico é chamada vetor de estado. Devido à notação introduzida por Paul Dirac, tais vetores são usualmente chamados kets (sing.: ket).
Em suma, tanto as "funções de onda" quanto os "vetores de estado" (ou kets) representam os estados de um dado sistema físico de forma completa e equivalente e as leis da mecânica quântica descrevem como vetores de estado e funções de onda evoluem no tempo.
Estes objetos matemáticos abstratos (kets e funções de onda) permitem o cálculo da probabilidade de se obter resultados específicos em um experimento concreto. Por exemplo, o formalismo da mecânica quântica permite que se calcule a probabilidade de encontrar um elétron em uma região particular em torno do núcleo.
Para compreender seriamente o cálculo das probabilidades a partir da informação representada nos vetores de estado e funções de onda é preciso dominar alguns fundamentos de álgebra linear.
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO]
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Entropia como conceito da Teoria da Informação
A Teoria da Informação teve inicialmente como destaque as questões técnicas, sendo uma das primeiras teorias a separar com nitidez a informação da significação. A Teoria da Informação está situada dentro da cibernética, onde a informação se mostra como uma medida probabilística. Esta teoria tem um grande interesse pelo funcionamento dos sinais, pelas transformações energéticas mediante a codificação da mensagem e sua de codificação. Ela opera com os seguintes conceitos:
- ruído;
- redundância;
- entropia;
- imprevisibilidade.
Em fontes contínuas, a codificação da informação gera ruído na mensagem, isso se dá pelo fato de que a fonte contínua precisaria de um vasto repertório de símbolos e que, como consequência, necessitaria uma capacidade de transmissão grande e, como é sabido, não existe um canal livre de ruído.
Shannon abordou, também o conceito de redundância é relacionado à entropia no sentido de que a redundância é tudo o que não é fundamental para ser entendido em uma determinada mensagem, ou seja, é entendida como algo complementar. Então é a medida de entropia para que a mensagem atinja a entropia máxima.
A entropia desejada de uma informação é a máxima que é dada pelas probabilidades equivalentes de ocorrer todos os símbolos.
A teoria da informação não estuda uma língua pelo número de símbolos alfabéticos que a compõem, mas sim pela análise à redundância na língua, considerando que o inverso da entropia é a redundância, ou seja, a organização do sistema em questão. Uma língua entrópica dispõe de um vocabulário rico, com palavras diferenciadas, que mostram o poder das combinatórias; uma língua pouco entrópica é pobre e repetitiva.
Em relação a imprevisibilidade, quanto maior for, será menor a chance de apreensão por parte do receptor, pois o receptor depende da ordem em que as mensagens são transmitidas. A imprevisibilidade total é correspondente à informação nula, ou seja, não há informação.
A medida da informação (ou surpresa) de um evento é uma função que decresce a medida em que a probabilidade do evento se eleva. Ela pode ser calculada a partir da fórmula de Hartley (1928):
- X
A Teoria da Informação teve inicialmente como destaque as questões técnicas, sendo uma das primeiras teorias a separar com nitidez a informação da significação. A Teoria da Informação está situada dentro da cibernética, onde a informação se mostra como uma medida probabilística. Esta teoria tem um grande interesse pelo funcionamento dos sinais, pelas transformações energéticas mediante a codificação da mensagem e sua de codificação. Ela opera com os seguintes conceitos:
- ruído;
- redundância;
- entropia;
- imprevisibilidade.
Em fontes contínuas, a codificação da informação gera ruído na mensagem, isso se dá pelo fato de que a fonte contínua precisaria de um vasto repertório de símbolos e que, como consequência, necessitaria uma capacidade de transmissão grande e, como é sabido, não existe um canal livre de ruído.
Shannon abordou, também o conceito de redundância é relacionado à entropia no sentido de que a redundância é tudo o que não é fundamental para ser entendido em uma determinada mensagem, ou seja, é entendida como algo complementar. Então é a medida de entropia para que a mensagem atinja a entropia máxima.
A entropia desejada de uma informação é a máxima que é dada pelas probabilidades equivalentes de ocorrer todos os símbolos.
A teoria da informação não estuda uma língua pelo número de símbolos alfabéticos que a compõem, mas sim pela análise à redundância na língua, considerando que o inverso da entropia é a redundância, ou seja, a organização do sistema em questão. Uma língua entrópica dispõe de um vocabulário rico, com palavras diferenciadas, que mostram o poder das combinatórias; uma língua pouco entrópica é pobre e repetitiva.
Em relação a imprevisibilidade, quanto maior for, será menor a chance de apreensão por parte do receptor, pois o receptor depende da ordem em que as mensagens são transmitidas. A imprevisibilidade total é correspondente à informação nula, ou seja, não há informação.
A medida da informação (ou surpresa) de um evento é uma função que decresce a medida em que a probabilidade do evento se eleva. Ela pode ser calculada a partir da fórmula de Hartley (1928):
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Aqui, é a unidade da informação (Por exemplo: Informação binária, ). Já entropia pode ser explicitamente escrita como
- X
Aqui, é a unidade da informação (Por exemplo: Informação binária, ). Já entropia pode ser explicitamente escrita como
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a probabilidade do i-ésimo resultado para a variável .
Uma maneira mais simples de medir a entropia é perceber que há duas possibilidades de ocorrência de um evento, como no caso do lançamento de uma moeda em um jogo de cara-ou-coroa com moeda viciada. Nesse caso temos p e q, onde q = 1-p, e a entropia do sistema é calculada como
- X
onde é a probabilidade do i-ésimo resultado para a variável .
Uma maneira mais simples de medir a entropia é perceber que há duas possibilidades de ocorrência de um evento, como no caso do lançamento de uma moeda em um jogo de cara-ou-coroa com moeda viciada. Nesse caso temos p e q, onde q = 1-p, e a entropia do sistema é calculada como
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Na mecânica estatística quântica, a entropia de von Neumann, nomeada em homenagem a John von Neumann, é a extensão dos conceitos clássicos de entropia de Gibbs ao campo da mecânica quântica.[1] O formalismo matemático abrangente da mecânica quântica foi apresentado pela primeira vez no livro "Mathematische Grundlagen der Quantenmechanik" publicado em 1932 de Johann von Neumann.[2] Para um sistema mecânico quântico descrito por uma matriz densidade ρ, a entropia de von Neumann és[3][4]
onde denota o traço e ln denota o logaritmo (natural) da matriz. E se ρ é escrito em termos de seus autovetores como
- X
Na mecânica estatística quântica, a entropia de von Neumann, nomeada em homenagem a John von Neumann, é a extensão dos conceitos clássicos de entropia de Gibbs ao campo da mecânica quântica.[1] O formalismo matemático abrangente da mecânica quântica foi apresentado pela primeira vez no livro "Mathematische Grundlagen der Quantenmechanik" publicado em 1932 de Johann von Neumann.[2] Para um sistema mecânico quântico descrito por uma matriz densidade ρ, a entropia de von Neumann és[3][4]
onde denota o traço e ln denota o logaritmo (natural) da matriz. E se ρ é escrito em termos de seus autovetores como
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
então a entropia de von Neumann é meramente[3]
- X
então a entropia de von Neumann é meramente[3]
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Nesta forma, S pode ser visto como equivalente à entropia teórica de Shannon da informação.[3]
Nesta forma, S pode ser visto como equivalente à entropia teórica de Shannon da informação.[3]
Comentários
Postar um comentário